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 Graphene is known for its unique band structure, making it a great candidate for many electronic 

applications. However, it presents also astonishing mechanical properties [1], which can modify the usual behavior of 

the 2D material. Here, we report on the investigation of charge transport in corrugated hBN-encapsulated graphene 

devices (Fig. 1. a) and b)). We investigate our device by Raman measurements (Fig 1 c). Raman spectra show a 

periodic response due to the presence of the corrugation. Moreover, the position of peak 2D and G are clearly 

correlated, which is typical of the presence of strain in graphene [2]. From low-bias transport measurements at 4 K, 

we observe a clear signature of strain effects on transport properties by the emergence of a broad peak at high Vg., in 

contrast with unstrained graphene (Fig. 1 d)) [4]. The graphene is under a periodic stress, which can be seen as a 

Hamiltonian perturbation equivalent to applying periodic effective potentials to the graphene: a scalar potential and a 

pseudo vectorial potential [3]. We develop a model for ballistic transport through a strain barrier in graphene, showing 

that strain can induce valley separation (Fig 1 e)). This model reproduces both qualitatively and quantitatively the 

measured gate dependence of the resistance. 
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Fig. 1. a) - Principle Schematic view of the corrugated hBN/graphene/hBN device b) - Fabrication Optical image 

of an encapsulated corrugated graphene. Inset: an AFM image of the corrugation c) Raman spectroscopy Map of 

the intensity of the 2D peak and correlation between the 2D and G peaks positions over the corrugated area d) – 

Transport characterization Left: Map of differential resistance Rds as a function of the gate voltage Vg and of the 

bias voltage Vds at T = 4.4 K Right: Rds as a function of Vg at zero-biais for different temperatures (T = 4.4 K, 10 

K, 20 K, 30 K, 40 K, 50K, 60 K, 70 K, 80 K, 90 K, 100 K). e) – Theory Transmission probability through a 150nm 

long strain barrier with uniaxial strain  𝜀= 2% in the zigzag direction as a function of the electron energy E and 

the incidence angle on the barrier 𝜑,. Red lines correspond to the limits of authorized incident angles for valley K 

and the orange ones for valley K’  
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