Single photon emitters in hexagonal boron nitride for scalable quantum photonics

C. Fournier¹, A. Plaud^{1,2}, S. Roux^{1,2}, A. Pierret³, M. Rosticher³, S. Buil¹, X. Quélin¹, J. Barjon¹, J.-P. Hermier¹, <u>A. Delteil¹</u>

¹Université Paris-Saclay, UVSQ, CNRS, GEMaC, 78000, Versailles, France ²Laboratoire d'étude des microstructures - LEM, UMR 104, CNRS-ONERA, Université Paris-Saclay ³LPENS - Laboratoire de physique de l'ENS - ENS Paris

In the context of photonic quantum information science, hexagonal boron nitride (hBN) has recently emerged as a very promising material. The bidimensional character of hBN renders it attractive for the realisation of compact heterostructures and integrated photonic devices. Moreover, this wide-gap material has been recently shown to host single photon emitters (SPEs) with appealing optical properties in the red and near infrared regions [1]. However, these deep defects suffer from the wide distribution of their emission wavelength and, in most cases, a random spatial location [2,3]. These limitations hinder the scalability of the system for applications.

Here we demonstrate a new approach towards deterministic positioning of SPEs with similar emission wavelengths, based on irradiation with an electron beam [4]. The SPEs are locally activated in exfoliated hBN flakes using a focused electron beam and subsequently characterised using microphotoluminescence (fig. 1). They exhibit narrow linewidth at low temperature (below the ~ 100 μ eV resolution of the spectrometer) and a drastically reduced ensemble distribution of their emission wavelength ($\Delta\lambda < 1$ nm). Individual emitters display low $g^{(2)}(0)$ as well as high and stable count rates. Moreover, emission is observed up to room temperature.

Our results suggest new avenues towards top-down realisation of integrated quantum optical devices based on indistinguishable single photon sources in hBN.

References

- [1] T. Tran *et al.*, Nature Nanotech. **11**, 37 (2015).
- [2] N.R. Jungwirth et al., Nano Lett. 16, 6052 (2016).
- [3] N. Chejanovsky et al., Nano Lett. 16, 7037 (2016).
- [4] C. Fournier et al., Nature Commun. 12, 3779 (2021).

Fig. 1: hBN flake with eight irradiation sites and corresponding confocal map and spectra, displaying reduced statistical dispersion of the emission wavelength.